p-group, metabelian, nilpotent (class 2), monomial
Aliases: C25.49C22, C24.582C23, C23.461C24, C22.2462+ (1+4), (C2×C42)⋊7C22, C23⋊Q8⋊19C2, C23.619(C2×D4), (C22×C4).392D4, (C22×Q8)⋊5C22, C24⋊3C4.11C2, (C22×C4).99C23, C23.156(C4○D4), C23.34D4⋊36C2, C23.11D4⋊46C2, C2.14(C23⋊3D4), (C23×C4).402C22, C22.312(C22×D4), C24.C22⋊87C2, C2.C42⋊27C22, C22.30(C4.4D4), C2.62(C22.19C24), C2.50(C22.45C24), (C4×C22⋊C4)⋊91C2, (C2×C4⋊C4)⋊23C22, (C2×C4).357(C2×D4), (C2×C22⋊Q8)⋊24C2, C2.23(C2×C4.4D4), C22.337(C2×C4○D4), (C22×C22⋊C4).25C2, (C2×C22⋊C4).184C22, SmallGroup(128,1293)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 740 in 336 conjugacy classes, 104 normal (18 characteristic)
C1, C2 [×3], C2 [×4], C2 [×8], C4 [×14], C22, C22 [×10], C22 [×48], C2×C4 [×4], C2×C4 [×42], Q8 [×4], C23, C23 [×10], C23 [×48], C42 [×2], C22⋊C4 [×28], C4⋊C4 [×6], C22×C4 [×2], C22×C4 [×14], C22×C4 [×8], C2×Q8 [×4], C24, C24 [×2], C24 [×12], C2.C42 [×10], C2×C42 [×2], C2×C22⋊C4 [×16], C2×C22⋊C4 [×4], C2×C4⋊C4, C2×C4⋊C4 [×2], C22⋊Q8 [×4], C23×C4 [×2], C22×Q8, C25, C4×C22⋊C4, C24⋊3C4 [×2], C23.34D4 [×2], C24.C22 [×4], C23⋊Q8 [×2], C23.11D4 [×2], C22×C22⋊C4, C2×C22⋊Q8, C23.461C24
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], C2×D4 [×6], C4○D4 [×8], C24, C4.4D4 [×4], C22×D4, C2×C4○D4 [×4], 2+ (1+4) [×2], C22.19C24, C2×C4.4D4, C23⋊3D4, C22.45C24 [×4], C23.461C24
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=c2=f2=g2=1, d2=cb=bc, e2=ca=ac, ab=ba, ede-1=gdg=ad=da, ae=ea, af=fa, ag=ga, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
(1 15)(2 16)(3 13)(4 14)(5 21)(6 22)(7 23)(8 24)(9 25)(10 26)(11 27)(12 28)(17 29)(18 30)(19 31)(20 32)
(1 5)(2 6)(3 7)(4 8)(9 31)(10 32)(11 29)(12 30)(13 23)(14 24)(15 21)(16 22)(17 27)(18 28)(19 25)(20 26)
(1 7)(2 8)(3 5)(4 6)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)(17 25)(18 26)(19 27)(20 28)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 27 23 31)(2 12 24 20)(3 25 21 29)(4 10 22 18)(5 17 13 9)(6 30 14 26)(7 19 15 11)(8 32 16 28)
(1 5)(3 7)(9 11)(10 30)(12 32)(13 23)(15 21)(17 19)(18 26)(20 28)(25 27)(29 31)
(1 3)(2 14)(4 16)(5 7)(6 24)(8 22)(9 11)(10 28)(12 26)(13 15)(17 19)(18 32)(20 30)(21 23)(25 27)(29 31)
G:=sub<Sym(32)| (1,15)(2,16)(3,13)(4,14)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(17,29)(18,30)(19,31)(20,32), (1,5)(2,6)(3,7)(4,8)(9,31)(10,32)(11,29)(12,30)(13,23)(14,24)(15,21)(16,22)(17,27)(18,28)(19,25)(20,26), (1,7)(2,8)(3,5)(4,6)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,27,23,31)(2,12,24,20)(3,25,21,29)(4,10,22,18)(5,17,13,9)(6,30,14,26)(7,19,15,11)(8,32,16,28), (1,5)(3,7)(9,11)(10,30)(12,32)(13,23)(15,21)(17,19)(18,26)(20,28)(25,27)(29,31), (1,3)(2,14)(4,16)(5,7)(6,24)(8,22)(9,11)(10,28)(12,26)(13,15)(17,19)(18,32)(20,30)(21,23)(25,27)(29,31)>;
G:=Group( (1,15)(2,16)(3,13)(4,14)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(17,29)(18,30)(19,31)(20,32), (1,5)(2,6)(3,7)(4,8)(9,31)(10,32)(11,29)(12,30)(13,23)(14,24)(15,21)(16,22)(17,27)(18,28)(19,25)(20,26), (1,7)(2,8)(3,5)(4,6)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,27,23,31)(2,12,24,20)(3,25,21,29)(4,10,22,18)(5,17,13,9)(6,30,14,26)(7,19,15,11)(8,32,16,28), (1,5)(3,7)(9,11)(10,30)(12,32)(13,23)(15,21)(17,19)(18,26)(20,28)(25,27)(29,31), (1,3)(2,14)(4,16)(5,7)(6,24)(8,22)(9,11)(10,28)(12,26)(13,15)(17,19)(18,32)(20,30)(21,23)(25,27)(29,31) );
G=PermutationGroup([(1,15),(2,16),(3,13),(4,14),(5,21),(6,22),(7,23),(8,24),(9,25),(10,26),(11,27),(12,28),(17,29),(18,30),(19,31),(20,32)], [(1,5),(2,6),(3,7),(4,8),(9,31),(10,32),(11,29),(12,30),(13,23),(14,24),(15,21),(16,22),(17,27),(18,28),(19,25),(20,26)], [(1,7),(2,8),(3,5),(4,6),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24),(17,25),(18,26),(19,27),(20,28)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,27,23,31),(2,12,24,20),(3,25,21,29),(4,10,22,18),(5,17,13,9),(6,30,14,26),(7,19,15,11),(8,32,16,28)], [(1,5),(3,7),(9,11),(10,30),(12,32),(13,23),(15,21),(17,19),(18,26),(20,28),(25,27),(29,31)], [(1,3),(2,14),(4,16),(5,7),(6,24),(8,22),(9,11),(10,28),(12,26),(13,15),(17,19),(18,32),(20,30),(21,23),(25,27),(29,31)])
Matrix representation ►G ⊆ GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4] >;
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 4A | 4B | 4C | 4D | 4E | ··· | 4R | 4S | 4T | 4U | 4V |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | 2+ (1+4) |
kernel | C23.461C24 | C4×C22⋊C4 | C24⋊3C4 | C23.34D4 | C24.C22 | C23⋊Q8 | C23.11D4 | C22×C22⋊C4 | C2×C22⋊Q8 | C22×C4 | C23 | C22 |
# reps | 1 | 1 | 2 | 2 | 4 | 2 | 2 | 1 | 1 | 4 | 16 | 2 |
In GAP, Magma, Sage, TeX
C_2^3._{461}C_2^4
% in TeX
G:=Group("C2^3.461C2^4");
// GroupNames label
G:=SmallGroup(128,1293);
// by ID
G=gap.SmallGroup(128,1293);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,672,253,568,758,723,675]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=g^2=1,d^2=c*b=b*c,e^2=c*a=a*c,a*b=b*a,e*d*e^-1=g*d*g=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations